**Water To Water Heat Pump**

**R560**

![Image of R560 heat pump](image)

Figure 1: **R560** shown complete with Optional Wattmeter Upgrade **R560A**

- *Stabilises in minutes allowing many tests to be conducted in a typical laboratory period.*
- *Allows a complete refrigerant pressure-enthalpy cycle diagram to be drawn at all operating conditions.*
- *Operates on CFC R134a refrigerant.*
- *Allows a complete energy balance to be performed between electrical input and thermal input/output.*
- *Allows generation of heat pump performance curves over arrange of conditions.*
- *Optional Data Acquisition Upgrade.*
- *Two year warranty*
**Introduction**

The R560 Hilton Water to Water Heat Pump has been designed to provide students with a practical and quantitative demonstration of the vapour compression cycle, and is suitable for all course levels, from vocational to undergraduate.

Both refrigerators and heat pumps use the vapour compression cycle, and although the applications of these machines differ the components are essentially the same.

The unit described demonstrates the heat pump application where a large freely available energy source, such as atmosphere or water, is to be upgraded for water heating.

As a bench top unit designed for student use, the unit will be of particular interest to those studying:

- Water-Water Engineering
- Agricultural Engineering
- Energy Conservation
- Thermodynamics
- Building Services
- Chemical Engineering
- Marine Engineering
- Plant & Process Engineering
- Refrigeration and Air Conditioning
- Food Technology

**Experimental Capabilities**

- Determination of power input, heat output and coefficient of performance.
- Production of heat pump performance curves over a range of source and delivery temperatures.
- Plotting the vapour compression cycle on a p-h diagram and comparing this with the ideal cycle.
- Determination of energy balances for condenser and compressor.
- Production of heat pump performance curves based on R134a properties, at a variety of evaporating and condensing temperatures.
- Estimation of the effects of compressor pressure ratio on volumetric efficiency.

**Description**

The components of the heat pump and its instrumentation are mounted on a gloss finish high quality ABS plastic panel.

The heat pump consists of a hermetic compressor, an efficient plate heat exchanger condenser and evaporator, a liquid receiver, a thermostatically controlled expansion valve.

The components are clearly but compactly arranged in a manner similar to that used for many domestic air-water heat pumps and all are visible from the front of the unit.

The operating cycle is as follows:

Slightly superheated Refrigerant R134a vapour enters the compressor from the evaporator and its pressure is increased. This brings about a rise in temperature and the hot vapour enters the water cooled plate condenser. Heat is given up to the cooling water and the refrigerant condenses to a liquid before passing to the liquid receiver and then the expansion valve.

On passing through the expansion valve the pressure of the liquid refrigerant is reduced, causing the saturation temperature to fall to below that of the atmosphere. Thus, as it flows through the evaporator, there is a temperature difference between the refrigerant and the water in the evaporator. The resulting heat transfer causes the refrigerant to boil, and on leaving the evaporator it has become slightly superheated vapour, ready to return to the compressor. The degree of superheat is automatically controlled by the expansion valve, which may be adjusted.

The temperature at which heat is delivered in the condenser is controlled by the water flow rate and its inlet temperature. Water may be delivered at up to 50°C.

The evaporating temperature is largely determined by the ambient conditions of the water source evaporator. However, a limited variation is possible, by variation of the evaporator water flow rate.

Variable area flowmeters on the refrigerant and cooling water circuits, an electrical energy meter recording power input to the compressor and a digital electronic thermometer recording all relevant temperatures, allow an interesting and comprehensive range of experiments to be conducted.
Specification

General
A fully instrumented bench top water to water heat pump operating on the Water-Water vapour compression cycle with refrigerant R134a as the working fluid.

Detailed
Refrigerant: R134a (HFC134a)
Panel: High quality ABS plastic panel on which the following components are mounted.
Compressor: Fully hermetic single cylinder reciprocating type. Displacement 18.5 cm³ rev⁻¹
Condenser: Refrigerant to water insulated plate heat exchanger.
Liquid Receiver: With valves. Contains entire refrigerant charge if required.
Evaporator: Water to refrigerant efficient plate heat exchanger.
Digital Thermometer: Resolution 0.1ºC, with switch to select from six thermocouples.
Flow Meters (3): Variable area type – to indicate R134a and H₂O flow rates (2).
Pressure Gauges (2): To indicate R134a pressures in evaporator and condenser.
Electrical Energy Meter: Watt-hour type recording electrical input to the compressor.
Safety Features: Condenser high pressure switch and compressor thermal overload switch. Residual current circuit breaker and a combined double pole main switch and overload cut out. All electrical components connected to common earth conductor.

Optional Data Acquisition Upgrade
An optional Computerised Data Acquisition Upgrade RC560A is available to enable all relevant system parameters to be automatically recorded on a PC for further analysis and display. Data may also be transferred to spreadsheet format for complex analysis and calculation.

Services Required
Electrical:
Or: B: 800W 110-120 Volts, Single phase, 60Hz (with earth/ground).

Water: Cold water, continuous supply. 180 litres/Hour at 15 m head minimum.

Ordering Information
Order as: R560 Water-Water Heat Pump Unit
Optional:
R560A Digital Wattmeter Upgrade
RE590 Ground Source Simulator
RC560A Data Acquisition Upgrade

Electrical Specification
B: 110-120 Volts, Single Phase 60Hz (With earth/ground).

Language
Either: English, Spanish, French.

Shipping Specifications
Net Weight: 65kg. (approx.)
Gross Weight: 95 kg. (approx.)
Packing Case Dimensions: 112 x 82 x 76 cm (approx.)
Packing Case Volume: 0.69 m³ (approx.)

Also Available On Request
Further detailed specification.
Additional copies of instruction manual.
Recommended list of spares for 5 years operation.

Accessories and Spares
Unit supplied with:
One experimental operating and maintenance manual in English, Spanish, French.
Accessories and spares for 2 years normal operation.
List available on request.

NOTE: The policy of P.A. Hilton Ltd is one of continual improvement and we reserve the right to change this specification without notice.
**Optional Extra R560A**
Digital Wattmeter Upgrade

**Specification**
Optional upgrade – digital wattmeter fitted to panel in place of the standard watt-hour recorder. R560A gives direct reading of compressor power consumption.

**Experimental Capabilities:**
Measurement of the electrical power used to drive the compressor.

**Ordering Information**
Order as: Digital Wattmeter Upgrade R560A.

---

**Optional Extra RE590**
Ground Source Simulator

**Specification**
Optional upgrade – self-contained ground source simulator tank containing ground source coils, complete with a high pressure circulating pump and hoses for connection to the R560. Can be filled with a range of locally sourced materials such as water, sand or soil.

**Dimensions**
Height: 42cm  Depth: 82cm  Weight: 15kg (empty)

**Experimental Capabilities:**
(Depending upon fill material)
- Comparison of a static water-source with a flowing water supply
- Analysis of soil composition on efficiency of ground source heat pump
- Analysis of moisture content of soil on efficiency of ground source heat pump.

**Ordering Information**
Order as: Ground Source Simulator RE590

---

**Accessories and Spares**
Unit supplied with:
- One experimental operating and maintenance manual in English, Spanish, French
- Accessories and spares for 2 years normal operation. List available on request

**Also Available On Request**
Further detailed specification. Additional copies of instruction manual. Recommended list of spares for 5 years operation.

---

**NOTE**: The policy of P.A.Hilton Ltd is one of continual improvement and we reserve the right to change this specification without notice.
**Optional Extra RC560A**

**Data Acquisition Upgrade**

**Hardware details**

The Optional Computerised Data Acquisition Upgrade RC560A consists of a 21 channel Hilton Data logger (D103), together with pre-configured, ready to use, Windows™ compatible educational software.

Factory fitted coupling points on the R560 allow installation of the upgrade to the unit at any time in the machine’s extensive life.

The Hilton Data logger (D103) connects, using the cable supplied, to a standard USB port on the user-supplied PC. If more than one logger is required connection is via a second USB port or standard USB hub.

The combined educational software and hardware package allows immediate computer monitoring and display of all relevant parameters on the R560.

**Software Details**

The pre-configured menu driven Software supplied with the Computer Upgrade RC560A allows all recommended experiments involving the electronic transducers and instruments on the R560 to be carried out with the aid of computerised data acquisition, data storage and on-screen data presentation. This enhances student interest and speeds comprehension of the principles being demonstrated.

Students are presented with either raw data for later hand calculation or alternatively data may be transferred to most spreadsheets for computerised calculation and graphical presentation.

Data may be stored on disc and displayed at any time using the software supplied. Alternatively data may be transferred to any compatible spreadsheet together with individual time and date stamp on each reading for complex analysis.

**Additional Data Logging Facility Supplied As Standard**

The D103 is the third generation of Hilton Data Logger. It comprises an industrially proven 21 channel interface with 8 thermocouples (type T and K as standard) / differential voltage inputs (±100mv DC), 8 single ended DC voltage inputs (±8v), 4 logic or frequency inputs and one mains voltage input. In addition there are on board 12v DC, ±5V DC and ±15v DC power supplies for most commercially available transducers.

The Hilton Data Logging software supplied as standard with the RC560A package allows the D103 to be disconnected from the R560 and used together with most standard transducers as a stand-alone computer data logger for the instrumentation and monitoring of existing laboratory equipment using locally sourced industrial transducers. The software is also backwards compatible with our many second generation D102 data loggers that are already in use worldwide.

Full data logger command protocol and communications details are provided in an extensive user manual that allows other software applications to communicate with the logger via the USB interface. Users can write their own software, typically in LabView, Matlab, C, C++, Visual Basic etc. This further expands the student project capabilities of the R560 package from teaching and demonstration into the field of research and postgraduate study.

**New for 2013: p-h software also available. Contact a sales representative for more details**

**Computer Hardware Requirements**

The menu driven Software supplied with the Computer Upgrade RC560A will operate on a PC which has at least 0.5Gb Mb ram, VGA graphics, 1Gb hard drive, CD drive and an available USB port. The software is Windows 2000, XP and 7 compatible.

**Ordering Information**

Order as:

Data Acquisition Upgrade RC560A

P.A.HILTON Ltd.

Horsebridge Mill, King’s Somborne, Stockbridge, Hampshire, SO20 6PX, England.

Telephone: National (01794) 388382
International +44 1794 388382

Fax: National (01794) 388129
International +44 1794 388129

E-mail: sales@p-a-hilton.co.uk
Website: www.p-a-hilton.co.uk

NOTE: The policy of P.A.Hilton Ltd is one of continual improvement and we reserve the right to change this specification without notice.